ADVISORY COMMITTEE ON ANIMAL FEEDINGSTUFFS

75th Meeting of ACAF on 15 February 2018

PRESENTATION

Use of Algae as animal feed

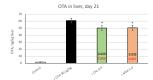
Gerry Dillon Alltech Ltd February 2018

Algae

- .
- Algae have been a human food for thousands of years in all parts of the world (Borowitza, 1998) and in maritime areas of the world as fodder (Volesky, 1970) 40000 species of eukaryotic and prokaryotic (cyanobacteria) algae, only a few species are used directly as food or as food supplements at present .

Alga	Source	Reference
Cyanobacteria (blue-green	algae)	
Spirulina platensis S. maxima	Cultured (USA, Thailand, China, Taiwan, India, etc.)	Jassby (1988b); Richmond (1988); Belay et al. (1994)
Nostoc commune	Field-collected	Martinez (1988)
Aphanizomenon flos-aquae	Field-collected (Lake Klamath, USA)	
Chlorophyta Chlorella spp.	Cultured (Taiwan, Japan)	Soong (1980)
Dunaliella salina (for beta-carotene)	Cultured (Australia, Israel, USA)	Borowitzka & Borowitzka (1989a,b)
Scenedesmus spp.	Cultured (Czech Republic and experimental)	Becker (1988); Grobbelaar et al. (1995)
Haematococcus pluvialis (for astaxanthin)	Cultured (experimental only)	Borowitzka (1992)

Algae as Feed


- · Source of Protein
- Mycotoxin binding
- Source of DHA/Omega-3; Astaxanthin; β-carotene

Altech

Chlorella Vulgaris

Ochratoxin binding


The addition of *Chlorella Vulgaris* (CHL) to broiler feed at 0.5, 1 and 2kg/T resulted in a 13, 34 and 35 % decrease in liver OTA concentration when compared with the control containing no mycotoxin binder

Alltech

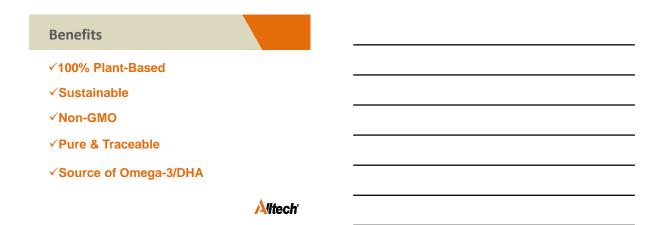
Algae as sources of Omega-3

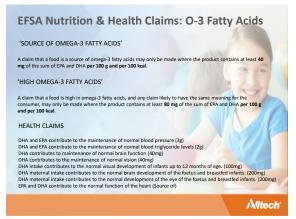
- 1980's/1990's
 - Markets for long chain omega-3 fatty acids began to develop in the areas
 of health supplements and food enrichment and for use in animal feeds to
 modify the fats of poultry, beef, and pork to a healthier profile for humans
 (Barclay, 1994)
 - Algae production optimized by companies such as Martek and OmegaTech in the US
- 2000's Enrichment of meat with omega-3 investigated using different feed sources (Rymer & Givens, 2005; 2010)
- 2010's Commercial algal products available for enrichment of meat, dairy and eggs. E.g. All-G-Rich and FORplus by Alltech.

Alltech

Heterotrophic Algae Production

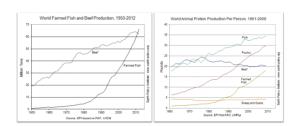
- Closed, controlled system
- Minimized contamination risks
- Higher level of consistency
- Traceable
- Pure
- Capacity, automation and versatility
- Protected by AQS



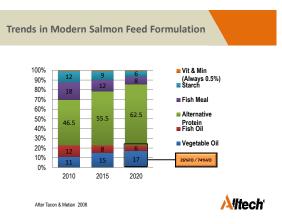


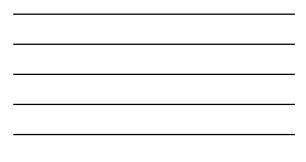
Omega-3 Fatty Acids	
Fatty Acids	
Saturated	Unsaturated
Monounsaturated	Polyunsaturated
Omega-6	Omega-3
Alpha- linclenic Acid Elcosapentae (ALA) Acid (EP	

Omega-3/DHA - Clear, Functional Benefits

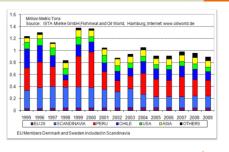

Fish Oil Replacement

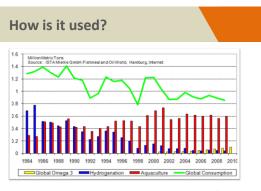
- Global fish stocks decreasing due to over fishing
- Global population and demand for food and protein is increasing

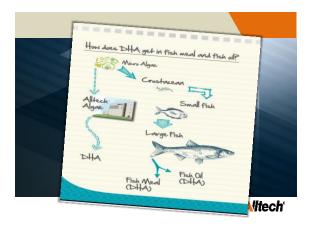




How much protein will we need ..?

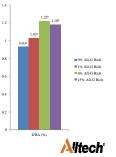


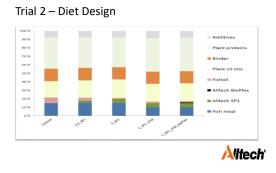


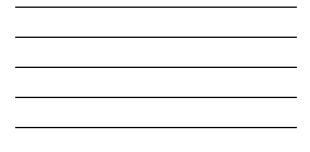

Global Fish Oil Production

Alltech-Nofima Research Alliance

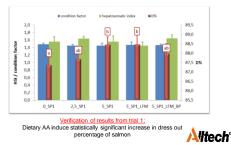
Trial Design

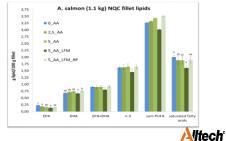

- The objective of the study was to evaluate the nutritional and flesh quality impacts and functional activities in commercial Atlantic salmon diets with increasing levels of All-G Rich.
- A feeding trial with 4 levels of All-G Rich (0%, 1%, 6% and 15%) was performed.
- A total of 480 fish were divided into 4 treatment groups with 3 reps per treatment and 40 fish per tank.
- 12 week feeding trial


Alltech-Nofima Research Alliance


Results

- The 6% All-G Rich treatment group had the highest DHA percent in the fillet with the 15% All-G Rich treatment group slightly less.
- The 6% All-G Rich treatment had the highest total of PUFA omega 3 as well as EPA plus DHA.


Alltech-Nofima Research Alliance


Alltech-Nofima Research Alliance

Trial 2 – Biometrics

Alltech-Nofima Research Alliance

Trial 2 – Lipid Analysis

Alltech-Nofima Research Alliance

Trial 2 – Fillet Quality

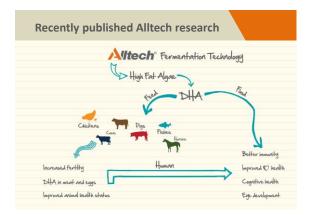
	MFM_0_AA	MFM_2.5_AA	MFM_5_AA	LFM_5_AA	LFM_5_AA_BP
Dietary FM level (%)	15	15	15	10	10
Dietary AA level (%)	0	2.5	5	5	5
Liquid loss, %	2.1 ± 0.5	3.0 ± 0.2	2.5 ± 0.5	2.8 ± 0.3	$\textbf{2.5}\pm\textbf{0.4}$
Lightness, L value	79.4 ± 0.3	79.7 ± 0.4	$\textbf{79.9} \pm \textbf{0.3}$	79.1 ± 0.2	80.0 ± 0.5
SalmoFan score	$\textbf{22.0}\pm\textbf{0.3}$	$\textbf{21.2}\pm\textbf{0.2}$	21.3 ± 0.3	21.9 ± 0.3	21.5 ± 0.3
Firmness** (N)	1.57 ±0.08	1.61 ± 0.10	1.61 ± 0.08	1.55 ± 0.06	1.44 ± 0.10
Gaping* (%)	$\textbf{33.3} \pm \textbf{2.5}^{ab}$	$26.7\pm2.5^{\text{b}}$	26.7 ± 2.5^{h}	$40\pm4.4^{\rm a}$	$6.7\pm2.5^{\circ}$

Alltech

Alltech-Nofima Research Alliance

Conclusions

- Fish growth rates were high and similar in all treatments.
- FCR was low and similar in all treatments.
- Highest levels of DHA were analyzed in fish fed Alltech Algae
- Bioplex mineral supplementation in low fish meal diets resulted in Significantly improved Omega 3 lipid levels and were similar to medium fish meal diets.
- Gaping was nearly eradicated by the supplementation of Bioplex minerals.



Recently published Alltech research

- Poultry & Egg
- · Dairy milk enrichment and animal performance
- Pigs
- Fertility

Alltech

Poultry & Eggs

Poultry Performance

Table 3. Effects of dietary treatments on the production performance and body weight of laying hens from wk 45 through 77*.

			Diet ¹			
roduction parameter	Control	+1%All-G-Rich TM	+2%All-G-Rich TM	+3%All-G-Rich TM	Pooled SEM	P-value
gg production (HDP,%)	77.6	73.7	78.3	76.5	1.9	0.39
eed intake (g/hen/d)	116	110	110	113	1.8	0.09
eed conversion (kg/dz)	1.81	1.80	1.69	1.77	0.06	0.48
Bird weight of wk 65 (kg)	1.80	1.73	1.76	1.77	0.03	0.59
Bird weight of wk 77 (kg)	1.88	1.92	1.77	1.84	0.04	0.10
Data and more of Camble	also all					

Bild weight of WK // (kg) 1.88 1.22 1.77 1.07 10

T. Au, 2015 J. Appl. Poult. Res. 24:394-400 http://dx.doi.org/10.3382/japr/pfv042

Poultry & Eggs

Egg Characteristics

Table 4. Effects of dietary treatments on egg characteristics.1

		Diet			
Control	+1%All-G-Rich TM	+2%All-G-Rich TM	+3%All-G-Rich™	Pooled SEM	P-value
66.3	66.8	66.4	65.8	1.12	0.93
28.9	29.6	28.4	29.0	0.58	0.55
8.64	8.60	8.35	8.23	0.19	0.38
74.1	70.7	72.0	74.8	1.83	0.40
63.9 ^a	64.0 ^a	62.7 ^b	63.0 ^b	0.24	0.004
12.7 ^b	12.7 ^b	13.6 ^a	13.8ª	0.35	0.006
59.5	60.7	62.6	62.8	0.97	0.08
	66.3 28.9 8.64 74.1 63.9 ^a 12.7 ^b	66.3 66.8 28.9 29.6 8.64 8.60 74.1 70.7 63.9 ^a 64.0 ^a 12.7 ^b 12.7 ^b	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccc} \hline Control & +1\%AII-G-Rich^{7M} & +2\%AII-G-Rich^{7M} & +3\%AII-G-Rich^{7M} \\ \hline 66.3 & 66.8 & 66.4 & 65.8 \\ 28.9 & 29.6 & 28.4 & 29.0 \\ 8.64 & 8.60 & 8.35 & 8.23 \\ 74.1 & 70.7 & 72.0 & 74.8 \\ 61.9^{4} & 64.0^{4} & 65.2^{6} & 63.0^{6} \\ 12.7^{6} & 12.7^{6} & 13.6^{4} & 13.38 \\ \hline \end{array}$	$\begin{array}{c cccccc} \hline Control & +184 RI-G-R164^{TM} & +294 RII-G-R164^{TM} & +394 RI-G-R164^{TM} & +394 RI-G-R164^{TM} & Peeled SEM \\ \hline 66.3 & 66.8 & 66.4 & 65.8 & 1.12 \\ 28.9 & 29.6 & 28.4 & 29.0 & 0.58 \\ 8.64 & 8.60 & 8.35 & 8.23 & 0.19 \\ 7.41 & 70.7 & 72.0 & 74.8 & 1.83 \\ 61.9^{4} & 64.6^{4} & 62.7^{6} & 63.9^{6} & 0.24 \\ 12.7^{6} & 12.7^{6} & 13.6^{6} & 13.8^{4} & 0.35 \\ \hline 12.7^{6} & 12.7^{6} & 13.6^{6} & 13.8^{4} & 0.35 \\ \hline \end{array}$

¹Data are means of 6 replicates of 6 eggs sampled after feeding treatment diets for 25 week. ²Dete control = corn-soybean meat basal diet with no AlI-G-RichTM = 194 AlI-G-RichTM = basal diet with 1% AlI-G-RichTM; ±2% AlI-G-RichTM = basal diet with 2% AlI-G-RichTM = basal diet with 3% AlI-G-RichTM. ⁴³Means within a row with no common superscription differ (P < 0.05).

T. Ao, 2015 J. Appl. Poult. Res. 24:394-400 http://dx.doi.org/10.3382/japr./pfv042

Alltech

Poultry & Eggs

Egg Enrichment

Table 6. Effects of dietary treatments on the concentration of total lipids and major fatty acids of egg yolk.1

		Diet*						
Items		Control	+1% All-G-Rich TM	+2% All-G-Rich™	+3% All-G-Rich TM	Pooled SEM	P-value	Linear contrast
Total lipid,	%	30.5	29.3	30.0	29.6	0.51	0.43	
Major fatty	acids (mg/100 g of yolk)							
C16:0	Palmitic	7631	7402	7901	8005	172	0.13	TIS .
C16:1n7	Palmitoleic	563	519	615	611	27	0.11	ns
C18:0	Palmitic	2844	2745	2650	2725	84	0.48	TIS .
C18:1n7C	Vaccenic	435 ^a	404 ^a	426 ^b	385°	5.9	0.01	**
C18:1n9C	Oleic	11503	11064	11255	11304	213	0.57	TIS
C18:2n6	Linoleic	5557ª	5183 ^{a,b}	5066 ^b	4555°	135	0.01	**
C20:4n6	Arachidonic	608ª	469 ^b	403°	336 ^d	15	0.00	**
C22:6n3	Docosahexaenoic (DHA)	2484	5099	7170	776ª	16	0.00	**

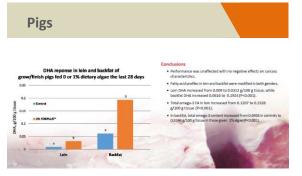
²Diet: contral = corn-apbean mush band let with no AII-G-Rich²⁰, +1% AII-G-Rich²⁰ = band diet with 1% AII-+2% AII-G-Rich²⁰ = band diet with 5% AII-G-Rich²⁰, +2% AII-G-Rich²⁰ = band diet with 3% AII-G-Rich²⁰. ⁴⁴Mans within a row with no common superscription differ (*P* < 0.05). ⁴⁵significant linear contrast. *P* > 0.05.

T. Ao, 2015 J. Appl. Poult. Res. 24:394-400 http://dx.doi.org/10.3382/japr/bfv042

Dairy

Dietary supplementation with algae on lactating cows

Health, productivity and milk composition


Treatment group - 100 g algae/cow/day (16 g DHA/cow/day)

Results:

- No negative effects on animal health in terms of somatic cell count, haematological and biochemical blood parameters
- Body condition was marginally improved.
- A tendency towards increased milk production was observed during the final stage of the study (+4.5 kg cow/day on days 78–84).
- The fatty acid profile of milk was improved by supplementation, with significantly lower saturated fatty acids, significantly higher omega-3 fatty acids and an improved omega-3/omega-6 ratio
- Peak transfer efficiency from feed to milk at day 49 of 8.3%.
- No negative impact on cheese making qualities casein content, creaming, rennet coagulation*

Moran, C.A. J Anim Physiol Anim Nutr. 2017: 1_15 *Maran, C.A. J Anim Feed Sci (in-press)

Moran, C. A., Fuscani, G., Moriacchini, M., & Jacques, K. A. (2017). Changes in docosohexoenaic acid (DHA) con diets containing 1% heterotrophically grown algae during the last 28 days. Journal of Animal Science, 95 (Supple tent in longiss

```
Alltech
```

Animal Fertility

Dairy Cows*; diet supplemented daily with 100 g/cow of an algae from 27 to 147 days postpartum.

Results:

- Increased resumption of estrous cyclicity (77.6 vs 65.9%) and pregnancy at first AI (47.6 vs 32.8%) in primiparous cows.
- Increased pregnancy per AI in all AI in both primiparous and multiparous cows (41.6 vs 30.7%), which reduced days to pregnancy by 22 days (102 vs 124 days) compared with control cows.

Boars¹; supplemented 75g algae daily

Results:

Significant increase in semen volume and total sperm number indicated that the feeding regime described within this study has the potential for increasing the output of boar studs.

*M.P. Boland, S. Fair et al. Theriogenology 90 (2017) 78-87
*LPD Simulino, M.P. Boland Reproduction (2017) 153 707–723

Altech