ADVISORY COMMITTEE ON ANIMAL FEEDINGSTUFFS

63rd Meeting of ACAF on 26 February 2014

Presentation Paper Dr Kathy Lewis, University of Hertfordshire

The potential of feed additives to improve the environmental impact of European livestock farming

> Secretariat February 2014

The potential of feed additives to improve the environmental impact of European livestock farming

Dr Kathy Lewis Agriculture & Environment Research Unit University of Hertfordshire Feb 2014

> University of Hertfordshire

www.herts.ac.uk/aeru/

Project basics

- Funded by European Food Safety Authority (CFT/EFSA/FEED/2012/02)
- Systematic review, undertaken 2012-2013, 1-year project, to examine if feed additives could improved the environmental impact of livestock farming.
- Review scope & boundaries:
 - Studies published post-1990
 - Farmed livestock only excluding companion and zoo animals, marine
 - Direct beneficial effects only excludes benefits seen via performance improvements
 - Feed supplements only excludes nitrification & urease inhibitors
 - Livestock trials only excludes metabolic & mechanistic modelling
 - All document types includes peer-reviewed, unpublished, grey, industry

ACAF/14/01

Rationale

- Livestock are responsible for a variety of potential polluting emissions including GHG's, ammonia, odours and losses of N, P & S via excretion.
- Feed additives can be used to improve livestock digestive processes so that nutrients are used more effectively leading to a reduction in waste products.
- Feed additives are often promoted on the basis of producer benefits (e.g. improved productivity, better livestock health) & not on their potential benefits for the environment.
- There are some exceptions to this e.g. odour control, phytase for reducing P losses.

Project Aims

To undertake a systematic review of substances and agents that when used as feed additives, may have a direct beneficial effect on the environment.

Primary review question:

Can substances/agents, used as livestock feed additives, reduce potentially polluting emissions from livestock?

Secondary review questions:

- 1. For which additives, and which emissions, can benefits be quantified?
- 2. What are the pros, cons and comparability of different experimental approaches, measurement techniques & metrics? e.g. *in vitro* vs *in vivo*.
- 3. Do cattle/sheep respond the same?

Methodology

- Develop the literature review and search strategy protocol.
- Undertake the literature search:
 - Refine results for relevancy based on abstract.
 - Obtain full document and screen for quality & usefulness (according to inclusion/exclusion criteria in review protocol).
 - Snowballing.
- Undertake an industry & researcher consultation process to supplement literature.
- Log bibliographical details of each manuscript along with trial results in database.
- Synthesise, interpret the data via meta analysis and report.

Review protocol

Protocol aimed to:

- Identify databases, search terms, key industry & academic contacts.
- Define inclusion/exclusion criteria to:
 - Ensure manuscripts are relevant & within review boundaries.
 - Ensure studies meet required quality standards relating to experimental design & conditions different criteria for i*n vitro, in vivo*.
 - Ensure each study only included once.
- Identification of data to be retrieved.
- Develop various data tags to identify data type & aid data interpretation

Generic results of review

Far more data identified than was anticipated by EFSA

- Approx 1350 manuscripts found from the primary search, reduced to 619 (461 scientific studies & 158 background articles) after duplicates removed and first relevancy screening.
- Of the 461 studies, 234 failed to meet the inclusion criteria.
- Data for 302 individual experiments was extracted from included manuscripts.
- Data for 244 substances identified, environmental benefits found for 128, of which 37 (+) are listed on Annex 1 of EU Register of Feed Additives.
- Data was identified for 4 animal groups: cattle (cows & buffalo), sheep (inc. Goats), pigs & poultry (chickens, turkeys & ducks).
- Data for 8 potentially polluting emissions identified: methane, ammonia, carbon dioxide, odour & malodorous cpds, excretion of N, P, S.

Meta analysis

- Aimed to combine results from different studies in a statistically sound manner to provide a more robust, reasoned assessment of the potential for environmental benefits. However...
- Huge variations in important study parameters (e.g. diet, dose, in vitro / in vivo, reporting metrics etc.) meant compromises required.

Approach:

- Separate data on the basis of (i) additive, (ii) species and (iii) in vivo / in vitro.
- Convert all study data to %change (%Δ) between results with feed additive & a negative control and use mean value across studies, diets and dosage.

• Assumed* that:

10% reduction (% Δ <-10%) demonstrates environmental benefit 10% increase (% Δ >+10%) demonstrates environmental burden -10% to +10% equals no sound evidence either way.

 \ast Data for a 5%, 20% thresholds also reported to EFSA

ACAF/14/01

Key findings for Cattle

- At 10% threshold, 25 substances currently on Annex 1 found to reduce emissions predominately methane & ammonia. Some substances increased emissions.
- Most benefits seen with botanical extracts e.g. essential oils, spices, vegetable oils, tannins and saponins.
- *Cinnamomum verum* showed an average decrease in methane of 71%.
- Tannic acid showed a mean decrease in ammonia of 47%.
- Some substances decreased methane and ammonia simultaneously however, some decreased one gas at the expense the other.

Key findings for Cattle

Substance (Annex 1 EU	Ammonia	Methane %Δ
Feed Register only)	%Δ	
Linoleic acid	0	-56
Malic acid	+16	-23
Monensin	-4	-21
Cinnamomum verum	-14	-71
Origanum vulgare	-23	-50
Thymol	-11	-41
Tannic acid	-47	0
Linseed oil	+28	-28
Sunflower oil	+46	-18

Key findings for Sheep

- 21 valuable (Annex 1) substances identified.
- Most benefits seen with botanical extracts.
- Reductions in methane and ammonia.
- *Rheum officiale* showed an average decrease in methane of 75%.
- Eucalyptus oil showed average decrease in methane of 60% accompanied by a decrease in ammonia of 22%.
- Best performer for ammonia was thymol, showing a mean reduction of 46%.
- Some substances decreased methane and ammonia simultaneously.

Key findings for Sheep

Substance	Ammonia	Methane %Δ
	%Δ	
Linoleic acid	0	-34
Monensin	-16	-32
Thymol	-46	-53
Thymus vulgaris	-27	-48
Cinnamomum verum	-32	-48
Eucalyptus oil	-22	-60
Quillaja saponaria	-11	-17
Coconut oil	0	-38
Sunflower oil	0	-23

Key findings for Pigs & Poultry

- Less impressive findings than with ruminants.
- Pigs reductions in ammonia and N & P excretion seen.
- Pigs benzoic acid reduced ammonia by 23%.
- Pigs phytase reduced ammonia by 26%, P-losses by 21%.
- Poultry limited benefits.
- Poultry bentonite reduced ammonia by 41%.
- Poultry phytase reduced P-losses by 16%.

Experimental approaches & metrics

- Sound, established well developed, repeatable standard approaches available for all emissions.
- Problems identified in the study variability regarding...
 - For *in vivo* studies huge variations in diet, dose, diet adaptation periods, sampling periods and reporting metrics.
 - For *in vitro* studies huge variations in incubation period, incubation temperature and reporting metrics.
 - Reporting metrics caused problems in comparisons as it was not always possible to convert data – findings vary depending on metric chosen.

Species comparison (cattle v sheep)

General impressions considering all types of emissions:

- Robust conclusions difficult due to nature of the data.
- Data for each additive not always available for both species.
- Some examples of significant differences between species responses identified:
 - e.g. fumaric acid: methane: -92% cattle, -28% sheep. DL-malate: methane: -85% cattle, No effect sheep. tea saponin: methane: No effect cattle, 20% sheep. vegetable oils appear to increase ammonia in cattle but not sheep.

Species comparison (cattle v sheep)

More detailed study done with methane and cattle:

- Robust conclusion still difficult.
- Need to consider within-animal, animal to animal variations.
- Generally, cattle & sheep appear to respond similarly in broadest sense, i.e. where a response occurs it is seen in both species, but there are exceptions.
- Cattle appear to respond better than sheep for methane (but opposite for ammonia may be true).
- Greater similarity seen in methane reductions measured *in vitro* compared with that measured *in vivo* – maybe due to greater control over parameters.

In vitro versus In vivo

- *In vitro* preferred due to time, costs & animal welfare issues.
- General opinion on comparability in scientific press is divided.
- Many researchers use *in vitro* approaches to confirm *in vivo* findings.

General findings from this study:

- Difficult to reach sound conclusions due to nature of the data.
- Comparison better for methane than ammonia, for example:
 - Lauric acid, Quillaja, Yucca reduce ammonia *in vitro* but no effect *in vivo*.
 - Linseed oil reduces ammonia *in vivo* significantly but no effect *in vitro*.
- Degree of comparability seems to vary with animal type.

Conclusions

- Study was essentially a large scale scoping review.
- Data does have limitations but ...
- ... it points to the use of some feed additives as being a useful tool in reducing environmental impact of livestock farming particularly for methane and ammonia.
- Due to the data variability seen, a single study is not a good measure of the effect of a feed additive on emissions.
- Whilst experimental and measurement/analytical techniques are well established, more consistency in experimental conditions is needed.
- No sound evidence that *in vitro* and *in vivo* give the same results.
- No sound evidence that cattle and sheep respond to feed additives in the same way.
- More detailed work is needed.

Thank you!

- This work has been funded by the European Food Safety Authority as part of a wider research project. EFSA's financial support is gratefully acknowledged. The opinions expressed herein are those of the authors and not necessarily those of the EFSA.
- Full report available on EFSA website but its very, very long (1000+ pages including the annex's).
 - www.efsa.europa.eu/en/supporting/pub/440e.htm OR
 - tinyurl.com/qf5kez2
- Paper 'in press':
 - Lewis et al. (2014) The potential of feed additives to improve the environmental impact of European livestock farming: a multi-issue analysis. *International Journal of Sustainable Agriculture*.

Questions?

